中小学试卷免费下载网 · 试卷资源
专题22 二次函数与新定义综合问题
初三(九年级)数学综合检测
《专题22 二次函数与新定义综合问题》详情
资料介绍
9年级数学全册专项
📄 文档预览(前 3 页)
专题22 二次函数与新定义综合问题
典例剖析
【例1】(2022•湘西州)定义:由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”,如图①,抛物线C1:y=x2+2x﹣3与抛物线C2:y=ax2+2ax+c组成一个开口向上的“月牙线”,抛物线C1和抛物线C2与x轴有着相同的交点A(﹣3,0)、B(点B在点A右侧),与y轴的交点分别为G、H(0,﹣1).
(1)求抛物线C2的解析式和点G的坐标.
(2)点M是x轴下方抛物线C1上的点,过点M作MN⊥x轴于点N,交抛物线C2于点D,求线段MN与线段DM的长度的比值.
(3)如图②,点E是点H关于抛物线对称轴的对称点,连接EG,在x轴上是否存在点F,使得△EFG是以EG为腰的等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.
【例2】(2022•南通)定义:函数图象上到两坐标轴的距离都不大于n(n≥0)的点叫做这个函数图象的“n阶方点”.例如,点(,)是函数y=x图象的“阶方点”;点(2,1)是函数y=图象的“2阶方点”.
(1)在①(﹣2,﹣);②(﹣1,﹣1);③(1,1)三点中,是反比例函数y=图象的“1阶方点”的有 (填序号);
(2)若y关于x的一次函数y=ax﹣3a+1图象的“2阶方点”有且只有一个,求a的值;
(3)若y关于x的二次函数y=﹣(x﹣n)2﹣2n+1图象的“n阶方点”一定存在,请直接写出n的取值范围.
【例3】(2022春•芙蓉区校级期末)在y关于x的函数中,对于实数a,b,当a≤x≤b且b=
a+3时,函数y有最大值ymax,最小值ymin,设h=ymax﹣ymin,则称h为y的“极差函数”(此函数为h关于a的函数);特别的,当h=ymax﹣ymin为一个常数(与a无关)时,称y有“极差常函数”.
(1)判断下列函数是否有“极差常函数”?如果是,请在对应( )内画“√”,如果不是,请在对应( )内画“×”.
①y=2x ( );
②y=﹣2x+2 ( );
③y=x2 ( ).
(2)y关于x的一次函数y=px+q,它与两坐标轴围成的面积为1,且它有“极差常函数”h=3,求一次函数解析式;
(3)若,当a≤x≤b(b=a+3)时,写出函数y=ax2﹣bx+4的“极差函数”h;并求4ah的取值范围.
【例4】(2022•武侯区校级模拟)【阅读理解】
定义:在平面直角坐标系xOy中,对于一个动点P(x,y),若x,y都可以用同一个字母表示,那么点P的运动路径是确定的.若根据点P坐标求出点P运动路径所对应的关系式是函数,则称由点坐标求函数表达式的过程叫做将点“去隐”.
例如,将点M(m+1,﹣m+1)(m为任意实数)“去隐”的方法如下:
设x=m+1①,y=﹣m+1②
由①得m=x﹣1③
将③代入②得y=﹣(x﹣1)+1,整理得y=﹣x+2
则直线y=﹣x+2是点M的运动路径.
【迁移应用】
在平面直角坐标系xOy中,已知动点Q(﹣a,﹣a2﹣a+3)(a为任意实数)的运动路径是抛物线.
(1)请将点Q“去隐”,得到该抛物线表达式;
(2)记(1)中抛物线为W(如图),W与x轴交于点A,B(A在B的左侧),其顶点为点C,现将W进行平移,平移后的抛物线W'始终过点A,点C的对应点为C'.
ⅰ)试确定点C'运动路径所对应的函数表达式;
ⅱ)在直线x=﹣2的左侧,是否存在点C',使△ACC'为等腰三角形?若存在,求出点C'的坐标;若不存在,请说明理由.
...(仅显示前约 3 页内容)