中小学试卷免费下载网 · 试卷资源
专题16 图形变换中的重要模型之旋转模型
初三(九年级)数学综合检测
《专题16 图形变换中的重要模型之旋转模型》详情
资料介绍
9年级数学全册专项
📄 文档预览(前 3 页)
专题16 图形变换中的重要模型之旋转模型
几何变换中的旋转问题是历年中考考查频率高且考查难度较高,综合性强,通常有线段、三角形、(特殊)平行四边形的旋转问题。在解决此类问题时,要牢牢把握旋转的性质,即旋转前后的图形全等,对应角相等,对应边相等,再结合几何图形本身的性质,找到旋转过程中变化的量和不变的量,运用三角形全等或相似的有关知识,求解有关角、线段及面积问题。
模型1.三角形中的旋转模型
1)常规计算型
例1.(2020·四川绵阳·中考真题)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2,AD=2,将△ABC绕点C顺时针方向旋转后得△,当恰好经过点D时,△CD为等腰三角形,若B=2,则A=( )
A. B.2 C. D.
变式1.(2022·山西·中考真题)综合与实践
问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N,猜想证明:
(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;问题解决:(2)如图②,在三角板旋转过程中,当时,求线段CN的长;
(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.
2)最值(范围)型
例1.(2022·江苏常州·一模)如图,在Rt△ABC和Rt△CDE中,∠BAC=∠DCE=90°,AB=AC=4,CD=CE=2,以AB、AD为邻边作平行四边形ABFD,连接AF.若将△CDE绕点C旋转一周,则线段AF的最小值是______.
变式1.(2021·四川成都·中考真题)在中,,将绕点B顺时针旋转得到,其中点A,C的对应点分别为点,.
(1)如图1,当点落在的延长线上时,求的长;
(2)如图2,当点落在的延长线上时,连接,交于点M,求的长;
(3)如图3,连接,直线交于点D,点E为的中点,连接.在旋转过程中,是否存在最小值?若存在,求出的最小值;若不存在,请说明理由.
3)综合证明型
例1.(2021·黑龙江·中考真题)在等腰中,,是直角三角形,,,连接,点是的中点,连接.
(1)当,点在边上时,如图①所示,求证:.(2)当,把绕点逆时针旋转,顶点B落在边AD上时,如图②所示,当,点B在边AE上时,如图③所示,猜想图②、图③中线段和又有怎样的数量关系?请直接写出你的猜想,不需证明.
变式1.(2021·山东潍坊·中考真题)如图1,在△ABC中,∠C=90°,∠ABC=30°,AC=1,D为△ABC内部的一动点(不在边上),连接BD,将线段BD绕点D逆时针旋转60°,使点B到达点F的位置;将线段AB绕点B顺时针旋转60°,使点A到达点E的位置,连接AD,CD,AE,AF,BF,EF.
(1)求证:△BDA≌△BFE;(2)①CD+DF+FE的最小值为 ;②当CD+DF+FE取得最小值时,求证:AD∥BF.(3)如图2,M,N,P分别是DF,AF,AE的中点,连接MP,NP,在点D运动的过程中,请判断∠MPN的大小是否为定值.若是,求出其度数;若不是,请说明理由.
模型2.平行四边形中的旋转模型
1)常规计算型
例1.(2022·浙江宁波·一模)如图,一副三角板如图1放置,,顶点重合,将绕其顶点旋转,如图2,在旋转过程中,当,连接,,此时四边形的面积是________.
变式1.(2022·广东广州·一模)如图,将▱ABCD绕点A逆时针旋转到▱AB′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,BC=4,BB′=1,则CE的长为___.
2)最值(范围)型
例1.(2022·广东·深圳九年级阶段练习)如图,在平行四边形ABCD中,,∠ABC=45°,点E为射线AD上一动点,连接BE,将BE绕点B逆时针旋转60°得到BF,连接AF,则AF的最小值是_____.
变式1.(2022·河南洛阳·一模)如图,在平行四边形ABCD中,,,,点E在线段BC上运动(含B、C两点).连接AE,以点A为中心,将线段AE逆时针旋转60°得到AF,连接DF,则线段DF长度的最小值为______.
3)分类讨论型
例1.(2022·江西·寻乌县二模)如图,在平行四边形中,,,.点为边上任意一点,连接,将绕点逆时针旋转得到线段.若点恰好落在平行四边形的边所在的直线上,则的长为______________.
...(仅显示前约 3 页内容)