中小学试卷免费下载网 · 试卷资源
专项13-最值模型-将军饮马-专题训练
初三(九年级)数学综合检测
《专项13-最值模型-将军饮马-专题训练》详情
资料介绍
9年级数学全册专项
📄 文档预览(前 3 页)
最值模型-将军饮马-专题训练
三角形中的最值(将军饮马模型)问题在考试中,无论是解答题,还是选择、填空题,都是学生感觉有困难的地方,也恰是学生能力区分度最重要的地方,主要考查转化与化归等的数学思想。在各类考试中都以中高档题为主,中考说明中曾多处涉及。在解决几何最值问题主要依据是:①两点之间,线段最短;②垂线段最短,涉及的基本方法还有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等。希望通过本专题的讲解让大家对这类问题有比较清晰的认识。
注意:本专题部分题目涉及勾股定理,希望大家全部学习完毕后再完成该专题训练。
【解题技巧】
将军
饮马
模型
图形
原理
两点之间线段最短
两点之间线段最短
三角形三边关系
特征
A,B为定点,l为定直线,P为直线l上的一个动点,求AP+BP的最小值
A,B为定点,l为定直线,MN为直线l上的一条动线段,求AM+BN的最小值
A,B为定点,l为定直线,P为直线l上的一个动点,求|AP-BP|的最大值
转化
作其中一个定点关于定直线l的对称点
先平移AM或BN使M,N重合,然后作其中一个定点关于定直线l的对称点
作其中一个定点关于定直线l的对称点
题型1: 求两条线段和最小值
例1.(湖北江夏初二月考)在平面直角坐标系中,Rt△OAB的顶点A在x轴上,点A的坐标为(4,0),∠AOB=30°,点E的坐标为(1,0),点P为斜边OB上的一个动点,则PA+PE的最小值为_____.
变式1.(甘肃西峰·八年级期末)如图,在等边△ABC中,E为AC边的中点,AD垂直平分BC,P是AD上的动点.若AD=6,则EP+CP的最小值为_______________.
变式2.(广东新丰·八年级期末)如图所示,在中,,直线EF是AB的垂直平分线,D是BC的中点,M是EF上一个动点,的面积为12,,则周长的最小值是______.
变式3.(湖北洪山·八年级期中)如图,将△ABC沿AD折叠使得顶点C恰好落在AB边上的点M处,D在BC上,点P在线段AD上移动,若AC=6,CD=3,BD=7,则△PMB周长的最小值为 ___.
变式4.(江阴市敔山湾实验学校八年级月考)某班级在探究“将军饮马问题”时抽象出数学模型:
直线同旁有两个定点、,在直线上存在点,使得的值最小.解法:如图1,作点关于直线的对称点,连接,则与直线的交点即为,且的最小值为.
请利用上述模型解决下列问题:(1)几何应用:如图2,中,,,是的中点,是边上的一动点,则的最小值为 ;
(2)几何拓展:如图3,中,,,若在、上各取一点、使的值最小,画出图形,求最小值并简要说明理由.
...(仅显示前约 3 页内容)