中小学试卷免费下载网 · 试卷资源
01-数轴中的九类动态模型
初三(九年级)数学综合检测
《01-数轴中的九类动态模型》详情
资料介绍
9年级数学全册专项
📄 文档预览(前 3 页)
数轴中的九类动态模型
数轴中的动态问题属于七年级上册必考压轴题型,主要以数轴为载体,体现分类讨论和数形结合等思想,考查学生的分析与综合能力。解题时,一般遵循“点、线、式”三步策略。即:先根据题意中动点的出发位置,移动方向和速度,用含t的式子表示动点,然后根据题中要求提炼出线段,用动点的含t表达式表示线段,最后根据线段间的等量关系,列出式子,然后求解(注意:要检验解是否符合动点的运动时间范围)。
【知识储备】
①求A、B两点间的距离:若能确定左右位置:右—左;若无法确定左右位置:;
②求A、B的中点:;
③数轴动点问题主要步骤:
1)画图——在数轴上表示出点的运动情况:运动方向和速度;
2)写点——写出所有点表示的数:一般用含有t的代数式表示,向右运动用“+”表示,向左运动用“-”表示;
3)表示距离——右—左,若无法判定两点的左右需加绝对值;
4)列式求解——根据条件列方程或代数式,求值。
注意:要注意动点是否会来回往返运动。
模型1.左右跳跃模型(动态规律模型)
【模型解读】
例1.(2022·湖北鄂州·七年级期末)已知点A,B,C在数轴上对应的数分别为a,b,c,其中a满足,b满足,点P位于该数轴上.(1)求出a,b的值,并求出A,B两点之间的距离AB;
(2)设点C与点A的距离为24个单位长度,且,若PB=2PC,求点P在数轴上对应的数p;
(3)设点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度……以此类推,问点P能移动到与点A或点B重合的位置吗?若能,请探究需要移动多少次才能重合?若不能,请说明理由.
例2.(2022·浙江嘉兴·七年级期末)一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动,设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长度,表示第n秒时机器人在数轴上的位置所对应的数.给出下列结论:①;②;③;④.其中,正确结论的序号是_______.
变式1.(2022·福建龙岩·七年级期末)如图,A点的初始位置在数轴上表示1的点上,先对A做如下移动:第一次向右移动3个单位长度到达点B,第二次从B点出发向左移动6个单位长度到达点C,第三次从C点出发向右移动9个单位长度到达点D,第四次从D点出发向左移动12个单位长度到达点E,…….以此类推,按照以上规律第( )次移动到的点到原点的距离为20.
A.7 B.10 C.14 D.19
变式2.(2022·江苏·泰州七年级阶段练习)在如图的数轴上,一动点Q从原点O出发,沿数轴以每秒钟4个单位长度的速度来回移动,其移动方式是先向右移动1个单位长度,再向左移动2个单位长度,又向右移动3个单位长度,再向左移动4个单位长度,又向右移动5个单位长度…
(1)求出2.5秒钟后动点Q所处的位置;(2)求出7秒钟后动点Q所处的位置;
(3)如果在数轴上有一个定点A,且A与原点O相距48个单位长度,问:动点Q从原点出发,可能与点A重合吗?若能,则第一次与点A重合需多长时间?若不能,请说明理由.
模型2.点的常规运动模型
【模型解读】
例1.(2023·江苏·七年级期中)已知数轴上有A、B、C三点,分别对应有理数-26、-10、10,动点P从B出发,以每秒1个单位的速度向终点C移动,同时,动点Q从A出发,以每秒3个单位的速度向终点C移动,设点P的移动时间为t秒.
(1)当t=5秒时,数轴上点P对应的数为 ,点Q对应的数为 ;P、Q两点间的距离为 .
(2)用含t的代数式表示数轴上点P对应的数为 .(3)在点P运动到C点的过程中(点Q运动到C点后停止运动),请用含t的代数式表示P、Q两点间的距离.
变式1.(2022·河北石家庄·七年级期末)如图,已知A,B(B在A的左侧)是数轴上的两点,点A对应的数为8,且AB=12,动点P从点A出发,以每秒2个单位长度的速度沿数轴向左运动,在点P的运动过程中,M,N始终为AP,BP的中点,设运动时间为t(t>0)秒,则下列结论中正确的有( )
①B对应的数是-4;②点P到达点B时,t=6;③BP=2时,t=5;④在点P的运动过程中,线段MN的长度不变
A.1个 B.2个 C.3个 D.4个
...(仅显示前约 3 页内容)