中小学试卷免费下载网 · 试卷资源
01 实数公式定理结论图表
初三(九年级)数学综合检测
《01 实数公式定理结论图表》详情
资料介绍
9年级数学全册专项
📄 文档预览(前 3 页)
知识必备01 数与式(公式、定理、结论图表)
考点一、实数的有关概念、性质
1.实数及其分类
实数可以按照下面的方法分类:
实数还可以按照下面的方法分类:
典例1:实数,,,,中,无理数的个数是( )
A.2 B.3 C.4 D.5
【思路点拨】常见的无理数有以下几种形式:
(1)字母型:如π是无理数,等都是无理数,而不是分数;
(2)构造型:如2.10100100010000…(每两个1之间依次多一个0)就是一个无限不循环的小数;
(3)根式型:…都是一些开方开不尽的数;
(4)三角函数型:sin35°、tan27°、cos29°等.
【答案】A;
【解析】本题主要考查无理数的概念.无理数是指无限不循环小数,,都是无限不循环小数,
故共有2个无理数.
【总结升华】无理数通常有以下几类:①开方开不尽的数;②含的数;③看似循环但实际不循环的小数;④三角函数型:sin35°、tan27°、cos29°等.抓住这几类无理数特征,则可以轻松解决有关无理数的相关试题.
2.数轴
规定了原点、正方向和单位长度的直线叫做数轴.每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.实数和数轴上的点是一一对应的关系.
3.相反数
实数a和-a叫做互为相反数.零的相反数是零.
一般地,数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的距离相等.
4.绝对值
一个实数的绝对值就是数轴上表示这个数的点与原点的距离.
一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即
如果a>0,那么|a|=a;
如果a<0,那么|a|=-a;
如果a=0,那么|a|=0.
典例2:阅读下面的材料,回答问题:
点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为.当A、B两点中有一点在原点时,不妨设点A在原点,如图1-1,;当A、B两点都不在原点时:
(1)如图1-2,点A、B都在原点的右边,;
O(A)
0
b
B
图1-1
O(A)
0
...(仅显示前约 3 页内容)