中小学试卷免费下载网 · 试卷资源
专题02 二次函数与直角三角形问题
初三(九年级)数学综合检测
《专题02 二次函数与直角三角形问题》详情
资料介绍
9年级数学全册专项
📄 文档预览(前 3 页)
专题02 二次函数与直角三角形问题
考法综述
解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.
一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.
有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.
解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.
如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.
方法揭秘
我们先看三个问题:
1.已知线段AB,以线段AB为直角边的直角三角形ABC有多少个?顶点C的轨迹是什么?
2.已知线段AB,以线段AB为斜边的直角三角形ABC有多少个?顶点C的轨迹是什么?
3.已知点A(4,0),如果△OAB是等腰直角三角形,求符合条件的点B的坐标.
图1 图2 图3
如图1,点C在垂线上,垂足除外.
如图2,点C在以AB为直径的圆上,A、B两点除外.
如图3,以OA为边画两个正方形,除了O、A两点以外的顶点和正方形对角线的交点,都是符合题意的点B,共6个.
如图4,已知A(3, 0),B(1,-4),如果直角三角形ABC的顶点C在y轴上,求点C的坐标.
我们可以用几何的方法,作AB为直径的圆,快速找到两个符合条件的点C.
如果作BD⊥y轴于D,那么△AOC∽△CDB.
设OC=m,那么.
这个方程有两个解,分别对应图中圆与y轴的两个交点.
对于代数法,可以采用两条直线的斜率之积来解决.
典例剖析
【例1】(2022•滨州)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,连接AC、BC.
(1)求线段AC的长;
(2)若点P为该抛物线对称轴上的一个动点,当PA=PC时,求点P的坐标;
(3)若点M为该抛物线上的一个动点,当△BCM为直角三角形时,求点M的坐标.
【例2】.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC于点F,连接DF.
(1)求抛物线的解析式;
(2)当点D在第二象限且=时,求点D的坐标;
(3)当△ODF为直角三角形时,请直接写出点D的坐标.
【例3】.(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).
(1)求此抛物线的函数解析式.
(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.
...(仅显示前约 3 页内容)