中小学试卷免费下载网 · 试卷资源

专项13-线段垂直平分线的性质和判定-七大题型

初三(九年级)数学综合检测

初三(九年级)数学综合检测

专项13-线段垂直平分线的性质和判定-七大题型》详情

资料介绍

9年级数学全册专项

📄 文档预览(前 3 页)

💡 提示:此为 PDF/Word 转换的 HTML 预览,部分格式可能与原文档略有差异

线段垂直平分线的性质和判定-七大题型

【知识点1  线段垂直平分线的性质】

线段垂直平分线上的点与这条线段两个端点的距离相等.反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.

【题型1  线段垂直平分线的性质在求线段中的应用】

【例1】(南召县期末)已知:如图,∠BAC的平分线与BC的垂直平分线相交于点P,PE⊥AB,PF⊥AC,垂足分别为E、F.若AB=8,AC=4,则AE=  


【变式1-1】(潮安区期中)如图,在△ABC中,∠ABC=45°,CD⊥AB于点D,AC的垂直平分线BE与CD交于点F,与AC交于点E.

(1)判断△DBC的形状并证明你的结论.

(2)求证:BF=AC.

(3)试说明CEBF.


【变式1-2】(庐阳区期末)如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.


【变式1-3】(海珠区校级期中)△ABC是等边三角形,D是三角形外一动点,满足∠ADB=60°.

(1)如图①,当D点在AC的垂直平分线上时,求证:DA+DC=DB;

(2)如图②,当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由.


【题型2  线段垂直平分线的性质在求角中的应用】

【例2】(周村区校级期中)如图,线段AB,DE的垂直平分线交于点C,且∠ABC=∠EDC=72°,∠AEB=92°,则∠EBD的度数为(  )


A.168° B.158° C.128° D.118°

【变式2-1】(龙马潭区校级月考)如图,已知锐角△ABC中,AB、AC边的中垂线交于点O,∠A=α(0°<α<90°),

(1)求∠BOC;

(2)试判断∠ABO+∠ACB是否为定值?若是,求出定值,若不是,请说明理由.


【变式2-2】(西湖区期末)如图,线段AB,BC的垂直平分线l1、l2相交于点O.若∠1=40°,则∠AOC=(  )


A.50° B.80° C.90° D.100°

【变式2-3】(金牛区校级期中)已知:△ABC是三边都不相等的三角形,点P是三个内角平分线的交点,点O是三边垂直平分线的交点,当P、O同时在不等边△ABC的内部时,那么∠BOC和∠BPC的数量关系是:∠BOC=      


【题型3  线段垂直平分线的性质在实际中的应用】

【例3】(甘井子区期末)如图,电信部门要在公路l旁修建一座移动信号发射塔.按照设计要求,发射塔到两个城镇M,N的距离必须相等,则发射塔应该建在(  )


A.A处 B.B处 C.C处 D.D处

【变式3-1】(浑南区期末)有A、B、C三个不在同一直线上的居民点,现要选址建一个新冠疫苗接种点方便居民接种疫苗,要求接种点到三个居民点的距离相等,接种点应建在(  )

A.△ABC的三条中线的交点处

B.△ABC三边的垂直平分线的交点处

C.△ABC三条角平分线的交点处

D.△ABC三条高所在直线的交点处

【变式3-2】(武功县期末)如图,兔子的三个洞口A、B、C构成△ABC,猎狗想捕捉兔子,必须到三个洞口的距离都相等,则猎狗应蹲守在△ABC(  )

...(仅显示前约 3 页内容)

📄 已显示前 3 页内容完整资料请点击上方下载按钮

资料信息

学科数学
资料类型综合检测
上传时间2025/11/02
浏览次数11