中小学试卷免费下载网 · 试卷资源
专项11-角度计算模型-8字型-专题训练
初三(九年级)数学综合检测
《专项11-角度计算模型-8字型-专题训练》详情
资料介绍
9年级数学全册专项
📄 文档预览(前 3 页)
角度计算模型-8字型-专题训练
1.如图所示,∠α的度数是( )
A.10° B.20° C.30° D.40°
2.如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,若∠A=45°,∠P=40°,则∠C的度数为( )
A.30° B.35° C.40° D.45°
3.如图,五角星的五个角之和,即:∠A+∠B+∠C+∠D+∠E=( )
A.180° B.90° C.270° D.240°
4.如图,线段AB、CD相交于点O,AE平分∠DAB,CE平分∠BCD,当∠B=50°,∠D=40°时,∠E的度数是 .
5.如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为 .
6.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G= °.
7.如图,在△ABC中,点D是AC延长线上的一点,过点D作DE∥BC,DF平分∠ADE,BF平分∠ABC.设∠A=n°,求∠F的度数(用含n的式子表示).
8.我们将内角互为对顶角的两个三角形称为“对顶三角形”.例如,在图1中,△AOB的内角∠AOB与△COD的内角∠COD互为对顶角,则△AOB与△COD为“对顶三角形”,根据三角形内角和定理知“对顶三角形”有如下性质:∠A+∠B=∠C+∠D.
(1)如图1,在“对顶三角形”△AOB与△COD中,∠AOB=70°,则∠C+∠D= °.
(2)如图2,在△ABC中,AD、BE分别平分∠BAC和∠ABC,若∠C=60°,∠ADE比∠BED大6°,求∠BED的度数.
9.已知线段AB与CD相交于点O,连接AD,BC.
(1)如图1,试说明:∠A+∠D=∠B+∠C;
(2)请利用(1)的结论探索下列问题:
①如图2,作AP平分∠DAB,交DC于点M,交∠BCD的平分线于点P,PC交AB于点N,若∠B+∠D=80°,求∠P的大小;
②如图3,若∠B=α,∠D=β,∠P=γ,且∠BAP∠BAD,∠BCP∠BCD,试探索α,β,γ之间的数量关系,并说明理由.
10.(1)如图1,求证∠A+∠B=∠C+∠D;
(2)如图2,∠ABC和∠ADC的角平分线交于点P,若∠A+∠C=50°,求∠P的度数;
(3)如图3,∠BAD和∠BCD的外角角平分线相交于点O,请探究∠O与∠B,∠D之间的数量关系,并直接写出结论.
11.在学习并掌握了平行线的性质和判定内容后,数学老师安排了自主探究内容一利用平行线有关知识探究并证明:三角形的内角和等于180°.小颖通过探究发现:可以将三角形的三个内角之和转化为一个平角来解决,也就是可以过三角形的一个顶点作其对边的平行线来证明.请将下面(1)中的证明补充完整:
(1)已知:如图1,三角形ABC,求证:∠BAC+∠B+∠C=180°,证明:过点A作EF∥BC.
(2)如图2,线段AB、CD相交于点O,连接AD、CB,我们把形如图2这样的图形称之为“8字形”.请利用小颖探究的结论直接写出∠A、∠B、∠C、∠D之间的数量关系: ;
(3)在图2的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N,得到图3,请判断∠P与∠D、∠B之间存在的数量关系,并说明理由.
12.如图1,已知线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:
(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系: ;
...(仅显示前约 3 页内容)