中小学试卷免费下载网 · 试卷资源
专项11-角度计算中的经典模型-八大题型
初三(九年级)数学综合检测
《专项11-角度计算中的经典模型-八大题型》详情
资料介绍
9年级数学全册专项
📄 文档预览(前 3 页)
角度计算中的经典模型-八大题型
【知识点1 双垂直模型】
【条件】∠B=∠D=∠ACE=90°.
【结论】∠BAC=∠DCE,∠ACB=∠CED.
【证明】∵∠B=∠D=∠ACE=90°;∴∠BAC+∠ACB=90°;又∠ECD+∠ACB=90°;∴∠BAC=∠DCE
同理,∠ACB+∠DCE =90°,且∠CED+∠DCE =90°;∴∠ACB=∠CED,得证.
【题型1 双垂直模型】
【例1】(建邺区期末)如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.
(1)求证:CD⊥AB
证明:在Rt△ABC中,∵∠ACB=90°(已知)
∴∠A+∠B=90°( )
又∵∠ACD=∠B(已知)
∴∠A+∠ACD=90°(等量代换)
∴∠ADC=90° ( )
∴CD⊥AB.
(2)如图②,若∠BAC的平分线分别交BC,CD于点E,F,求证:∠AEC=∠CFE;
(3)如图③,若E为BC上一点,AE交CD于点F,BC=3CE,AB=4AD,S△ABC=36.
①求S△CEF﹣S△ADF的值;
②四边形BDFE的面积是 .
【变式1-1】(润州区期末)已知△ABC中,∠ABC=90°,BD是AC边上的高,AE平分∠BAC,分别交BC、BD于点E、F.求证:∠BFE=∠BEF.
【变式1-2】(绥棱县校级期中)(1)如图①,△ABC是锐角三角形,高BD、CE相交于点H,找出∠BHC和∠A之间存在何种等量关系;
(2)如图②,若△ABC是钝角三角形,∠A>90°,高BD、CE所在的直线相交于点H,把图②补充完整,并指出此时(1)中的等量关系是否仍然成立?
【变式1-3】(香洲区期末)如图1,线段AB⊥BC于点B,CD⊥BC于点C,点E在线段BC上,且AE⊥DE.
(1)求证:∠EAB=∠CED;
(2)如图2,AF、DF分别平分∠BAE和∠CDE,EH平分∠DEC交CD于点H,EH的反向延长线交AF于点G.
①求证EG⊥AF;
②求∠F的度数.【提示:三角形内角和等于180度】
【知识点2 A字模型】
【条件】△ADE与△ABC.
【结论】∠AED+∠ADE=∠B+C.
【证明】根据三角形内角和可得,∠AED+∠ADE=180°-∠A,∠B+C=180°-∠A,
∴∠AED+∠ADE=∠B+C,得证.
【题型2 A字模型】
【例2】(江阴市校级月考)如图是某建筑工地上的人字架.这个人字架夹角∠1=120°,那么∠3﹣∠2的度数为 .
...(仅显示前约 3 页内容)