中小学试卷免费下载网 · 试卷资源

专题12 新定义型数学中考问题

初三(九年级)数学综合检测

初三(九年级)数学综合检测

专题12 新定义型数学中考问题 》详情

资料介绍

9年级数学全册复习

📄 文档预览(前 3 页)

💡 提示:此为 PDF/Word 转换的 HTML 预览,部分格式可能与原文档略有差异

专题12 新定义型数学中考问题

1. 我们发现:,,,…,,一般地,对于正整数,,如果满足时,称为一组完美方根数对.如上面是一组完美方根数对.则下面4个结论:①是完美方根数对;②是完美方根数对;③若是完美方根数对,则;④若是完美方根数对,则点在抛物线上.其中正确的结论有(   

A. 1个 B. 2个 C. 3个 D. 4个

2.在实数范围内定义运算“☆”:,例如:.如果,则的值是(    ).

A. B. 1 C. 0 D. 2

3.定义新运算“⨂”,规定:a⨂b=a﹣2b.若关于x的不等式x⨂m>3的解集为x>﹣1,则m的值是(  )

A.﹣1 B.﹣2 C.1 D.2

4.对于任意的有理数a,b,如果满足+=,那么我们称这一对数a,b为“相随数对”,记为(a,b).若(m,n)是“相随数对”,则3m+2[3m+(2n﹣1)]=(  )

A.﹣2 B.﹣1 C.2 D.3

5.定义一种运算:,则不等式的解集是( 

A. 或 B. 

C. 或 D. 或

6.定义a⊗b=2a+,则方程3⊗x=4⊗2的解为(  )

A.x= B.x= C.x= D.x=

7.定义:一次函数y=ax+b的特征数为[a,b],若一次函数y=﹣2x+m的图象向上平移3个单位长度后与反比例函数y=﹣的图象交于A,B两点,且点A,B关于原点对称,则一次函数y=﹣2x+m的特征数是(  )

A.[2,3] B.[2,﹣3] C.[﹣2,3] D.[﹣2,﹣3]

8. 规定:两个函数,的图象关于y轴对称,则称这两个函数互为“Y函数”.例如:函数与的图象关于y轴对称,则这两个函数互为“Y函数”.若函数(k为常数)的“Y函数”图象与x轴只有一个交点,则其“Y函数”的解析式为______.

9.定义:[a,b,c]为二次函数y=ax2+bx+c(a≠0)的特征数,下面给出特征数为[m,1﹣m,2﹣m]的二次函数的一些结论:①当m=1时,函数图象的对称轴是y轴;②当m=2时,函数图象过原点;③当m>0时,函数有最小值;④如果m<0,当x>时,y随x的增大而减小.其中所有正确结论的序号是        

10.我们规定:若=(x1,y1),=(x2,y2),则•=x1x2+y1y2.例如=(1,3),=(2,4),则•=1×2+3×4=2+12=14.已知=(x+1,x﹣1),=(x﹣3,4),且﹣2≤x≤3,则•的最大值是      

11.规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:

(1)下列图形是旋转对称图形,但不是中心对称图形的是________;

A.矩形    B.正五边形    C.菱形    D.正六边形

(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:________(填序号);

  

(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形,其中真命题的个数有(    )个;

A.0    B.1    C.2    D.3

(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.


12.若把第n个位置上的数记为xn,则称x1,x2,x3,…,xn有限个有序放置的数为一个数列A.定义数列A的“伴生数列”B是:y1,y2,y3,…,yn,其中yn是这个数列中第n个位置上的数,n=1,2,…,k且yn=并规定x0=xn,xn+1=x1.如果数列A只有四个数,且x1,x2,x3,x4依次为3,1,2,1,则其“伴生数列”B是   

13.定义:有一组邻边相等且对角互补的四边形叫做等补四边形.

理解:

(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,CD.

求证:四边形ABCD是等补四边形;

探究:

(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.

运用:

(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD=10,AF=5,求DF的长.


14. 在平面直角坐标系中,⊙O的半径为1,A,B为⊙O外两点,AB=1.给出如下定义:平移线段AB,得到⊙O的弦(分别为点A,B的对应点),线段长度的最小值称为线段AB到⊙O的“平移距离”.


...(仅显示前约 3 页内容)

📄 已显示前 3 页内容完整资料请点击上方下载按钮

资料信息

学科数学
资料类型综合检测
上传时间2025/11/02
浏览次数12