中小学试卷免费下载网 · 试卷资源
专题07 列解方程组解决实际含函数及不等式问题
初三(九年级)数学综合检测
《专题07 列解方程组解决实际含函数及不等式问题》详情
资料介绍
9年级数学全册复习
📄 文档预览(前 3 页)
专题07 列解方程(组)解决实际(含函数及不等式)问题
1.某公司需将一批材料运往工厂,计划租用甲、乙两种型号的货车,在每辆货车都满载的情况下,若租用30辆甲型货车和50辆乙型货车可装载1500箱材料;若租用20辆甲型货车和60辆乙型货车可装载1400箱材料.
(1)甲、乙两种型号的货车每辆分别可装载多少箱材料?
(2)经初步估算,公司要运往工厂的这批材料不超过1245箱.计划租用甲、乙两种型号的货车共70辆,且乙型货车的数量不超过甲型货车数量的3倍,该公司一次性将这批材料运往工厂共有哪几种租车方案?
2.某公司用火车和汽车运输两批物资,具体运输情况如下表所示:
所用火车车皮数量(节)
所用汽车数量(辆)
运输物资总量(吨)
第一批
2
5
130
第二批
4
3
218
试问每节火车车皮和每辆汽车平均各装物资多少吨?
3.“六•一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.
(1)求第一批玩具每套的进价是多少元?
(2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?
4.某校足球队需购买、两种品牌的足球.已知品牌足球的单价比品牌足球的单价高20元,且用900元购买品牌足球的数量用720元购买品牌足球的数量相等.
(1)求、两种品牌足球的单价;
(2)若足球队计划购买、两种品牌的足球共90个,且品牌足球的数量不小于品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买品牌足球个,总费用为元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?
5. 为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”.一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元.如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元.请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?
6.“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:
(1)A型自行车去年每辆售价多少元;
(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多.
7.黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.
(1)甲、乙两种商品的进货单价分别是多少?
(2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当11≤x≤19时,甲商品的日销售量y(单位:件)与销售单价x之间存在一次函数关系,x、y之间的部分数值对应关系如表:
销售单价x(元/件)
11
19
...(仅显示前约 3 页内容)