中小学试卷免费下载网 · 试卷资源

专题30 新定义与阅读理解创新型问题

初三(九年级)数学综合检测

初三(九年级)数学综合检测

专题30 新定义与阅读理解创新型问题》详情

资料介绍

9年级数学全册真题

📄 文档预览(前 3 页)

💡 提示:此为 PDF/Word 转换的 HTML 预览,部分格式可能与原文档略有差异

专题30 新定义与阅读理解创新型问题(31题)

一、单选题

1.(2023·湖北武汉·统考中考真题)皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积,其中分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知,,则内部的格点个数是(    )

A.266 B.270 C.271 D.285

2.(2023·湖南张家界·统考中考真题)“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”.若等边的边长为3,则该“莱洛三角形”的周长等于(    )

  

A. B. C. D.

3.(2023·重庆·统考中考真题)在多项式(其中中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:,,.下列说法:

存在“绝对操作”,使其运算结果与原多项式相等;

不存在“绝对操作”,使其运算结果与原多项式之和为0

所有的“绝对操作”共有7种不同运算结果.

其中正确的个数是  

A.0 B.1 C.2 D.3

4.(2023·湖南岳阳·统考中考真题)若一个点的坐标满足,我们将这样的点定义为“倍值点”.若关于的二次函数(为常数,)总有两个不同的倍值点,则的取值范围是(    )

A. B. C. D.

5.(2023·山东·统考中考真题)若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:等都是三倍点”,在的范围内,若二次函数的图象上至少存在一个“三倍点”,则c的取值范围是(    )

A. B. C. D.

6.(2023·福建·统考中考真题)我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率的近似值为3.1416.如图,的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计的面积,可得的估计值为,若用圆内接正十二边形作近似估计,可得的估计值为(  )


A. B. C.3 D.

二、填空题

7.(2023·甘肃武威·统考中考真题)如图1,我国是世界上最早制造使用水车的国家.1556年兰州人段续的第一架水车创制成功后,黄河两岸人民纷纷仿制,车水灌田,水渠纵横,沃土繁丰.而今,兰州水车博览园是百里黄河风情线上的标志性景观,是兰州“水车之都”的象征.如图2是水车舀水灌溉示意图,水车轮的辐条(圆的半径)长约为6米,辐条尽头装有刮板,刮板间安装有等距斜挂的长方体形状的水斗,当水流冲动水车轮刮板时,驱使水车徐徐转动,水斗依次舀满河水在点处离开水面,逆时针旋转上升至轮子上方处,斗口开始翻转向下,将水倾入木槽,由木槽导入水渠,进而灌溉,那么水斗从处(舀水)转动到处(倒水)所经过的路程是________米.(结果保留)

  

8.(2023·湖北随州·统考中考真题)某天老师给同学们出了一道趣味数学题:

设有编号为1-100的100盏灯,分别对应着编号为1-100的100个开关,灯分为“亮”和“不亮”两种状态,每按一次开关改变一次相对应编号的灯的状态,所有灯的初始状态为“不亮”.现有100个人,第1个人把所有编号是1的整数倍的开关按一次,第2个人把所有编号是2的整数倍的开关按一次,第3个人把所有编号是3的整数倍的开关按一次,……,第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”

的灯共有多少盏?

几位同学对该问题展开了讨论:

甲:应分析每个开关被按的次数找出规律:

乙:1号开关只被第1个人按了1次,2号开关被第1个人和第2个人共按了2次,3号开关被第1个人和第3个人共按了2次,……

丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.

根据以上同学的思维过程,可以得出最终状态为“亮”的灯共有___________盏.

9.(2023·湖南常德·统考中考真题)沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图.是以O为圆心,为半径的圆弧,C是弦的中点,D在上,.“会圆术”给出长l的近似值s计算公式:,当,时,__________.(结果保留一位小数)


10.(2023·北京·统考中考真题)学校组织学生参加木艺艺术品加工劳动实践活动.已知某木艺艺术品加工完成共需ABCDEFG七道工序,加工要求如下:

①工序CD须在工序A完成后进行,工序E须在工序BD都完成后进行,工序F须在工序CD都完成后进行;

②一道工序只能由一名学生完成,此工序完成后该学生才能进行其他工序;

③各道工序所需时间如下表所示:

工序

A

B

...(仅显示前约 3 页内容)

📄 已显示前 3 页内容完整资料请点击上方下载按钮

资料信息

学科数学
资料类型综合检测
上传时间2025/11/02
浏览次数11