中小学试卷免费下载网 · 试卷资源

第5章 二元一次方程组5个知识归纳

初二(八年级)数学综合检测

初二(八年级)数学综合检测

第5章 二元一次方程组5个知识归纳》详情

资料介绍

8年级数学上册复习

📄 文档预览(前 3 页)

💡 提示:此为 PDF/Word 转换的 HTML 预览,部分格式可能与原文档略有差异

第5章 二元一次方程组(知识归纳)

一、二元一次方程组的相关概念

1. 二元一次方程的定义

定义:方程中含有两个未知数(和),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 

要点:

(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.

(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1.

(3)二元一次方程的左边和右边都必须是整式. 

2.二元一次方程的解

定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 

要点:

二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为 的形式.

3. 二元一次方程组的定义

定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组.

要点:

(1)它的一般形式为(其中,,,不同时为零).

(2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组.

(3)符号“”表示同时满足,相当于“且”的意思.

4. 二元一次方程组的解

定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.

要点:

(1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.

(2)方程组的解要用大括号联立;

(3)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组无解,而方程组 的解有无数个. 

二、二元一次方程组的解法

1.解二元一次方程组的思想


2.解二元一次方程组的基本方法:代入消元法、加减消元法和图像法

(1)用代入消元法解二元一次方程组的一般过程:

①从方程组中选定一个系数比较简单的方程进行变形,用含有(或)的代数式表示(或),即变成(或)的形式;

②将(或)代入另一个方程(不能代入原变形方程)中,消去(或),得到一个关于(或)的一元一次方程;

③解这个一元一次方程,求出(或)的值;

④把(或)的值代入(或)中,求(或)的值;

⑤用“”联立两个未知数的值,就是方程组的解.

要点:

①用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比较容易的方程变形;

②变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程;

③要善于分析方程的特点,寻找简便的解法.如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法.整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率.

(2)用加减消元法解二元一次方程组的一般过程:

①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;

...(仅显示前约 3 页内容)

📄 已显示前 3 页内容完整资料请点击上方下载按钮

资料信息

学科数学
资料类型综合检测
教材版本beishi
上传时间2025/11/02
浏览次数8