中小学试卷免费下载网 · 试卷资源
第1章 勾股定理2类知识拓展
初二(八年级)数学综合检测
《第1章 勾股定理2类知识拓展》详情
资料介绍
8年级数学上册复习
📄 文档预览(前 3 页)
第1章 勾股定理 单元复习提升(知识拓展)
知识拓展
拓展01 勾股定理的证明方法
拓展知识
勾股定理的证明
方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.
图(1)中,所以.
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.
图(2)中,所以.
方法三:如图(3)所示,将两个直角三角形拼成直角梯形.
,所以.
典例1.勾股定理是数学定理中证明方法最多的定理之一,也是用代数思想解决几何问题最重要的工具之一.下列图形中可以证明勾股定理的有( )
A.①③ B.②③ C.②④ D.①④
跟踪训练1.如图,在四边形中,,,点C是边上一点,,..下列结论;①;②;③四边形的面积是;④;⑤该图可以验证勾股定理.其中正确的结论个数是( )
A.5 B.4 C.3 D.2
跟踪训练2.勾股定理又称毕达哥拉斯定理、商高定理、新娘座椅定理、百牛定理等,是人类早期发现并证明的重要数学定理之一,大约有五百多种证明方法,我国古代数学家赵爽和刘徽也分别利用《赵爽弦图》和《青朱出入图》证明了勾股定理,以下四个图形,哪一个是赵爽弦图( )
A. B.
C. D.
跟踪训练3.勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.
(1)①勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理(以下图形均满足证明勾股定理所需的条件);
②如图1,大正方形的面积是17,小正方形的面积是5,如果将如图1中的四个全等的直角三角形按如图2的形式摆放,求图2中最大的正方形的面积.
(2)如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足的有______个;
(3)如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为、,直角三角形面积为,请判断、、的关系______.
拓展02 勾股定理的折叠问题
拓展知识 一张直角三角形的纸片,如图1所示折叠,使两个锐角的顶点A、B重合,若∠B=30°,AC=,求DC的长。
分析:1、标已知,标问题(边长的问题一般有什么方法解决?),明确目标在哪个直角三角形中,设适当的未知数x;
2、利用折叠,找全等。
图1
图1
...(仅显示前约 3 页内容)